https://ogma.newcastle.edu.au/vital/access/ /manager/Index en-au 5 Sorption of PFOS in 114 well-characterized tropical and temperate soils: application of multivariate and artificial neural network analyses https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:39790 d) ranged from 5 to 229 mL/g (median: 28 mL/g), with 63% of the Fijian soils and 35% of the Australian soils showing Kd values that exceeded the observed median Kd. Multiple linear regression showed that TOC, amorphous aluminum and iron oxides contents, anion exchange capacity, pH, and silt content, jointly explained about 53% of the variance in PFOS Kd in soils. Variable charge soils with net positive surface charges, and moderate to elevated TOC content, generally displayed enhanced PFOS sorption than in temperate or tropical soils with TOC as the only sorbent phase, especially at acidic pH ranges. For the first time, two artificial neural networks were developed to predict the measured PFOS Kd (R2 = 0.80) in the soils. Overall, both TOC and surface charge characteristics of soils are important for describing PFOS sorption.]]> Thu 23 Jun 2022 14:06:17 AEST ]]> Highly efficient removal of antimonite (Sb (III)) from aqueous solutions by organoclay and organozeolite: kinetics and isotherms https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:39222 +-M) and hexadecylpyridinium bromide modified zeolite (HDPy+-Z) were used to measure Sb(III) uptake from solutions containing 0.5–2.5 mM antimonite. Adsorption isotherms of antimonite were studied using the Langmuir and Freundlich equations. Adsorption kinetics were investigated using pseudo-first-order, pseudo-second-order, Elovich and intra-particle diffusion models. The results of X-ray diffraction showed a large interlayer expansion for HDPy+-M, whereas the X-ray patterns of HDPy+-Z remained unchanged. Uptake of Sb(III) by both HDPy+-M and HDPy+-Z could be fitted well to the Langmuir isotherm, while the kinetics of adsorption could be described well using the pseudo-second-order model. Maximum adsorption capacities for Sb(III) uptake by HDPy+-M and HDPy+-Z were calculated to be 108.7 and 61.34 mg g−1, respectively. The results of the kinetic studies revealed that Sb(III) adsorption to HDPy+-Z was found to be quite fast and the reaction reached equilibrium in 8 h, whereas for HDPy+-M equilibration was attained within 24 h. The adsorption of antimonite onto both HDPy+-M and HDPy+-Z was found to be selective in the presence of Cl−1 and SO4−2 competitive anions. Considering the high affinity for Sb(III) uptake from solutions containing high concentrations of antimonite, both HDPy+-M and HDPy+-Z could be used as promising adsorbents for environmental applications.]]> Fri 27 May 2022 11:44:31 AEST ]]>